»Mladi za napredek Maribora 2016« 33. srečanje

Teorija grafov in nanocevke

RAZISKOVALNO PODROČJE: Matematika

Raziskovalna naloga

Avtor:	KLEMEN GORINŠEK,	ERIK MIHELIČ

Mentor: PETRA ŽIGERT PLETERŠEK

Šola: II. GIMNAZIJA MARIBOR

Maribor, februar 2016

»Mladi za napredek Maribora 2016« 33. srečanje

Teorija grafov in nanocevke

RAZISKOVALNO PODROČJE: Matematika

Raziskovalna naloga

Maribor, februar 2016

Kazalo vsebine

Kazalo slik	4
1 Povzetek	5
2 Zahvala	6
3 Uvod	7
4 Teoretične osnove	8
4. 1 Matematične definicije	
4. 1. 1 Graf	
4. 1. 2 Vzporedne povezave in enostavni graf	
4. 1. 3 Podgraf	9
4. 1. 4 Vpeti graf	10
4. 1. 5 Inducirani podgraf	10
4. 1. 6 1-faktor	10
4. 1. 7 Izomorfni grafi	
4. 1. 8 Hammingova razdalja	
4. 1. 9 Fibonaccijevo zaporedje	
4. 1. 10 Lucasovo zaporedje	12
4. 1. 11 Fibonaccijeve kocke	12
4. 1. 12 Lucasove kocke	13
4. 2 Ogljikovodiki	15
4. 2. 1 Heksagonalni sistemi	15
4. 2. 2 Resonančni graf	
5 Fibonaccijeve kocke in resonančni grafi	20
Izrek 1	20
Dokaz 1:	20
6 Nanocevke	23
6. 1 Definicija nanocevke	23
6. 2 Lastnosti nanocevk	23
7 Lucasove kocke in resonančni grafi	24
Izrek 2:	24
Dokaz 2:	24
8 Ugotovitve	26
9 Zaključek	29
10 Viri	

Kazalo slik

Slika 1. Primer grafa G	8
Slika 2. Enostavni graf (a) in vzporedni povezavi (b)	9
Slika 3. Graf G in nekateri podgrafi grafa G	9
Slika 4. Graf G (a) in njegov vpeti graf (b)	10
Slika 5. Graf G (a) in njegova inducirana podgrafa (b), (c)	10
Slika 6. Oba 1-faktorja grafa G na Sliki 5	11
Slika 7. Trije izomorfni grafi grafa G	11
Slika 8. Primer 3-dimenzionalne kocke Q ₃	12
Slika 9. Pretvorba Q₃ kocke v Fibonaccijevo kocko	13
Slika 10. Prvih pet Fibonaccijevih kock	13
Slika 11. Postopek pretvorbe iz Fibonaccijeve Γ_3 v Lucasovo kocko Λ_3	14
Slika 12. Prvih pet Lucasovih kock.	14
Slika 13. Pravilni heksagon	15
Slika 14. Cikel na heksagonalni mreži	15
Slika 15. Heksagonalni sistem določen s ciklom	16
Slika 16. Fibonacena (a), (b) in štirje linearno povezani obroči (c)	16
Slika 17. Ciklični polifenantren zlepljen preko povezav e in e'	17
Slika 18. Strukturna formula benzenovega obroča	17
Slika 19. Benzenov obroč, predstavljen z Kekulejevo strukturno formulo	18
Slika 20. Benzenov obroč, predstavljen kot 1-faktor	18
Slika 21. Simetrična razlika heksagonalnih sistemov z dvema heksagonoma	19
Slika 22. Primer označevanja dveh sosednjih heksagonov v fibonacenu	20
Slika 23. Primer označevanja prvih dveh heksagonov v fibonacenu	21
Slika 24. Definiranje nanocevke s pomočjo heksagonalne mreže	23
Slika 25. Ciklični polifenantren z osmimi heksagoni	24
Slika 26. 1-faktor brez e in e' spojnih povezav	25
Slika 27. Resonančni graf cikličnega fibonacena s štirimi heksagoni	25
Slika 28. 1-faktorja T _{2n} , ki nista v M ₁	26
Slika 29. Shematski prikaz povezovanja resonančnih grafov v Fibonaccijevo zaporedje	27
Slika 30. Shematski prikaz nastajanja Fibonaccijevega zaporedja 1-faktorjev 1. del	28
Slika 31. Shematski prikaz nastajanja Fibonaccijevega zaporedja 1-faktorjev 2. del	28

1 Povzetek

V teoriji grafov poznamo Fibonaccijeve kocke, ki so v tesni povezavi s Fibonaccijevim zaporedjem, le-to pa je sorodno Lucasovemu zaporedju in nadalje Lucasovim kockam. Videli bomo, da sta obe vrsti kock povezani s t.i. resonančnimi grafi nekaterih aromatskih ogljikovodikov. Kot modelni primer bova uporabila benzenoidne ogljikovodike, kjer z upoštevanjem nelinearne vezave benzenovih obročev dobimo strukture podobne ogljikovim nanocevkam. To nam lahko pomaga pri razumevanju njihovih lastnosti. Ker so nanomateriali, sploh ogljikove nanocevke danes zaradi svojih lastnosti eden najbolj zanimivih materialov, je dobro razumevanje ozadja delovanja teh sistemov temeljno za načrtovanje novih. Naloga bo pokrivala dve področji – matematiko in kemijo.

2 Zahvala

Rada bi se zahvalila zunanji mentorici, ki nama je priskrbela vso potrebno literaturo za nastanek raziskovalne naloge. Veliko časa je namenila razlaganju teoretičnih ozadij in novih pojmov, ki jih sprva nisva razumela. Posredovala nama je določene osnove, po katerih sva se zgledovala in na njih gradila razumevanje matematike ter kemije. Zahvalila bi se tudi notranji mentorici, ki je prva vstopila v kontakt z njo in naju je priporočala.

3 Uvod

Za raziskovalno nalogo sva se odločila, ker sva menila, da je tema o nanocevkah zelo zanimiva ter aktualna na področjih sodobne tehnologije. Pobudo sva dobila od profesorice kemije, ki naju je povezala z zunanjo mentorico. Sprva se nama je tema zdela dokaj abstraktna in težko razumljiva, saj je vključevala veliko matematike, vendar sva s pomočjo člankov in mentorice dosegla razumevanje. Najina naloga je bila raziskati in opisati povezave benzenoidnih ogljikovodikov z njihovimi resonančnimi grafi ter videti in prikazati povezavo le-teh s Fibonaccijevim in Lucasovim zaporedjem ter kockami. V celotni nalogi sta napisana in dokazana dva najpomembnejša izreka. Prvi izrek opisuje način označevanja členov v fibonacenih in povezavo z Fibonaccijevimi kockami, drugi izrek pa opisuje povezavo med cikličnim polifenantrenom ter Lucasovovo kocko, ki predstavlja njegov resonančni graf. Ker je nanotehnologija dandanes uporabljena na skoraj vseh področjih industrije, kot so računalništvo, informatika, energetika, avtomobilska industrija, in omogoča izdelavo naprav ali materialov, ki so lažji, hitrejši in močnejši, se nama zdi pomembno osnovno razumevanje sistemov.

4 Teoretične osnove

4. 1 Matematične definicije

Nasledenje definicije najdemo v viru [5].

4. 1. 1 Graf

Graf je diagram, ki ponazarja vse objekte in povezave med njimi. Te objekte imenujemo točke ali vozlišča, povezave med objekti pa povezave grafa. Lokacija vozlišč ni pomembna, dokler so povezave grafa ohranjene. Množico vozlišč grafa *G* označimo z V(G), množico povezav pa z E(G).

4. 1. 2 Vzporedne povezave in enostavni graf

Kadar dve ali več povezav povezuje isti par točk, to imenujemo vzporedne povezave. Če ima vsaka točka natanko eno povezavo z drugo točko, je to enostavni graf. Stopnja vozlišča je število povezav ki poteka iz tega vozlišča.

Slika 2. Enostavni graf (a) in vzporedni povezavi (b).

4.1.3 Podgraf

Graf *H* je podgraf grafa *G*, če je množica vozlišč grafa *H* podmnožica vozlišč grafa *G* ter enako velja za povezave. Po definiciji je vsak podgraf *G* spet graf in vsak graf je podgraf samega sebe. Na *Sliki 3.* vidimo primer grafa *G* in nekaj njegovih podgrafov.

Slika 3. Graf G in nekateri podgrafi grafa G.

4.1.4 Vpeti graf

Graf H je vpeti podgraf grafa G, če je H podgraf od G in imata oba grafa enaki množici vozlišč.

Slika 4. Graf G (a) in njegov vpeti graf (b).

4.1.5 Inducirani podgraf

Podgraf *H* grafa *G* je inducirani podgraf na množici vozlišč $V(H) \subset V(G)$, kadar za vsak par vozlišči *u* in *v* iz V(H) velja, da če je bila uv povezava v *G*, tedaj mora biti *uv* povezava tudi v grafu *H*.

Slika 5. Graf G (a) in njegova inducirana podgrafa (b), (c).

4. 1. 6 1-faktor

1-faktor je vpeti podgraf v katerem je vsako vozlišče stopnje 1. Povezave 1-faktorja imenujemo popolno prirejanje.

Slika 6. Oba 1-faktorja grafa G na Sliki 5.

4. 1. 7 Izomorfni grafi

Dva grafa *G* in *H* sta izomorfna, kadar obstaja bijektivna preslikava $f:V(G) \rightarrow V(H)$ taka, da je *uv* povezava v grafu *G* natanko takrat, ko je f(u)f(v) povezava v grafu *H*.

Slika 7. Trije izomorfni grafi grafa G.

4. 1. 8 Hammingova razdalja

Za binarna niza l_1 in l_2 je Hammingova razdalja H (l_1, l_2) število mest, v katerih se niza razlikujeta.

Primer: Imamo dva niza:

Niz 1: 100101 *Niz* 2: 100001

 $n_6: \left\{-\frac{100101}{100001} = 000100 \rightarrow 0 + 0 + 0 + 1 + 0 + 0 = 1\right.$

Razlikujeta se v natanko enem mestu, torej je Hammingova razdalja enaka 1.

4. 1. 9 Fibonaccijevo zaporedje

Fibonaccijevo zaporedje lahko definiramo z rekurzivno formulo: $F_{n+1} = F_n + F_{n-1}$, $n = 2, 3, 4 \dots$, pri čemer je $F_1 = 1, F_2 = 1$.

n	1	2	3	4	5	6	7
F_n	1	1	2	3	5	8	13

Tabela 1: Vrednost členov Fibonaccijevega zaporedja

4. 1. 10 Lucasovo zaporedje

Na podoben način je definirano Lucasovo zaporedje L_n , le da sta prva dva člena enaka 1 in 3, tako je Lucasovo zaporedje enako:

Tabela 2 [.]	Vrednost	členov	Lucasoveda	zaporedia
	vicunosi		Lucasovega	Zaporcuja

n	1	2	3	4	5	6	7
L _n	1	3	4	7	11	18	29

4. 1. 11 Fibonaccijeve kocke

Imamo binarni niz, ki ima *n*-mest. Vsa ta mesta so sestavljena iz 0 in 1 in vse možne kombinacije binarnega niza predstavljajo vozlišča *n*-dimenzionalne kocke, ki so med seboj povezana tako, da se sosednji dve vozlišči razlikujeta natanko v enem mestu. To pomeni, da je Hammingova razdalja med njima enaka 1.

Slika 8. Primer 3-dimenzionalne kocke Q₃.

Če poljubni *n*-dimenzionalni kocki odstranimo vse tiste nize, ki imajo dve zaporedni enici, dobimo Fibonaccijevo kocko Γ_n , ki je podgraf kocke. Upoštevati moramo, da zbrišemo tudi vse povezave, ki so se povezovale na zbrisano vozlišče.

Slika 9. Pretvorba Q₃kocke v Fibonaccijevo kocko.

Slika 10. Prvih pet Fibonaccijevih kock.

4. 1. 12 Lucasove kocke

Če v Fibonaccijevi kocki odstranimo vozlišča, ki imajo na prvem in zadnjem mestu 1, dobimo tako imenovano Lucasovo kocko Λ_n . V nadaljevanju bomo videli, da se Lucasova kocka pojavi kot resonančni graf cikličnega polifenantrena.

Slika 11. Postopek pretvorbe iz Fibonaccijeve Γ_3 v Lucasovo kocko Λ_3 .

Povezavo med Fibonaccijevo kocko in Fibonaccijevim zaporedjem daje Zeckendorfov izrek [6], ki pravi, da lahko vsako naravno število (vključno s številom 0) zapišemo na en sam način kot vsoto nesosednjih členov Fibonaccijevega zaporedja;

$$0 \le i < F_n: i = \sum_{j=2}^{n-1} b_j F_j$$

To naredimo tako, da najprej poiščemo največji člen Fibonaccijevega zaporedja F_k , da velja $F_k < n$ in mu prištejemo $n - F_k$. Tak postopek ponavljamo tako dolgo, dokler nismo število n račlenili na posamezna Fibonaccijeva števila.

Temu razcepu priredimo binarno oznako tako, da pišemo 1, če uporabimo člen Fibonaccijevega zaporedja, v nasprotnem priemeru pa 0. Binarna oznaka, ki predstavlja določeno naravno število tako nima zaporednih enic in so to torej vozlišča Fibonaccijeve kocke.

Primer:

Število 16 lahko napišemo kot 13 + 3, torej $F_7 + F_4$. Iz tega sledi, da je binarni niz tega števila = 1001000. Enica je na 7. in 4. mestu. Ostala mesta Fibonaccijevega zaporedja v vsoti niso uporabljena, zato imajo ničlo.

4. 2 Ogljikovodiki

4. 2. 1 Heksagonalni sistemi

Da lahko definiramo benzen moramo najprej pogledati heksagonalne sisteme. Heksagonalni sistemi so geometrijski liki, ki so sestavljeni iz večih skladnih heksagonov.

Heksagon je lik, ki ima šest stranic in šest oglišč. Kadar so stranice enake dolžine in so koti oglišč med seboj enaki, je to pravilni heksagon. V nadaljevanju bomo stranice heksagonov poimenovali povezave in oglišča bodo za nas vozlišča.

Slika 13. Pravilni heksagon.

Heksagonalne sisteme rišemo s pomočjo ravninske mreže, ki je sestavljena iz pravilnih heksagonov in jo imenujemo heksagonalna mreža.

Cikel na heksagonalni mreži predstavlja med seboj različne povezave in vozlišča tako, da je začetno vozlišče enako končnemu vozlišču. Cikle označujemo s *C*.

Definicija 1 [1]: Naj bo C cikel na heksagonalni mreži. Heksagonalni sistem je določen z vsemi vozlišči in povezavami, ki ležijo na ciklu C in znotraj njega.

Slika 14. Cikel na heksagonalni mreži.

Slika 15. Heksagonalni sistem določen s ciklom.

Cikel so v bistvu robne povezave heksagonalnega sistema, vozlišča, ki niso na robu cikla, pa se imenujejo notranja vozlišča.

Ločimo dve vrsti heksagonalnih sistemov: katakondenzirane in perikondenzirane. Katakondenzirani so takrat, ko ne vsebujejo notranjih vozlišč, oziroma kadar je posamezno vozlišče skupno kvečjemu dvema heksagonoma. Perikondenzirani heksagonalni sistemi vsebujejo notranja vozlišča, torej je vsaj eno vozlišče skupno trem heksagonom. Na *Sliki 15.* je prikazan perikondenziran heksagonalni sistem.

Ena od podmnožic katakondenziranih heksagonalnih sistemov so fibonaceni. V fibonacenu ima vsak heksagon, ki ni začetni ali končni, natanko dva sosednja heksagona. Pomembno je, da katerikoli trije zaporedni heksagoni fibonacena ne smejo biti linearno povezani, temveč mora med njimi obstajati prelom.

Slika 16. Fibonacena (a), (b) in štirje linearno povezani obroči (c).

Prelom je heksagon, ki ni robni in v katerem sta vozlišči stopnje dve med seboj povezani s povezavo.

Naslednja podmnožica katakondenziranih heksagonalnih sistemov oz. podmnožica samih fibonacenov pa je tako imenovana množica polifenantrenov. Same strukturne lastnosti polifenantrena so podobne fibonacenu, razlika pa je ta, da se dve sosednji vozlišči druge stopnje, ki označujeta prelom izmenično izmenjujeta (kot je prikazano na *Sliki 17.*) in da je število vseh obročev sodo število.

Če polifenantren zlepimo preko dveh spojnih povezav *e* in *e*', dobimo ciklični polifenantren.

Slika 17. Ciklični polifenantren zlepljen preko povezav e in e'.

Heksagonalni sistem je tesno povezan z organsko kemijo, pred vsem pa nas bodo zanimali aromatskimi ogljikovodiki.

Benzenoidni ogljikovodiki so policiklični aromatski ogljikovodiki, sestavljeni iz samih šestčlenskih obročev. Imajo značilni strukturni element, benzenov obroč, ki ga imenujemo tudi aromatsko jedro. Molekule benzenoidnih ogljikovodikov vsebujejo enega ali več takšnih obročev.

Osnovna spojina benzenoidnih ogljikovodikov je torej benzen. Sestavljen je iz šestih v obroč povezanih ogljikovih atomov, na vsak ogljikov atom pa je vezan po en vodikov atom. Celotna molekula tvori heksagonalno obliko in vsebuje šest delokaliziranih π elektronov.

Slika 18. Strukturna formula benzenovega obroča

Delokalizacijo elektronov lahko prikazujemo z izmeničnimi dvojnimi vezmi. Tovrsten prikaz benzena temelji na uveljavljenem modelu Kekulejevih struktur, ki jih bomo za lažjo predstavo tudi uporabljali. Vodikovih atomov ne rišemo, ogljikove atome pa zamenjamo z oglišči heksagona. Heksagonalni sistemi so torej matematični model za opis benzenoidnih ogljikovodikov.

Slika 19. Benzenov obroč, predstavljen z Kekulejevo strukturno formulo.

Matematično predstavimo Kekulejeve strukture s tako imenovanimi 1-faktorji.

Slika 20. Benzenov obroč, predstavljen kot 1-faktor.

Če večje molekule benzenoidnih ogljikovodikov rišemo kot 1-faktorje, postane slika precej nejasna, zato bomo zaradi boljše nazornosti 1-faktor zamenjali s Kekulejevo strukturno formulo in ju enačili.

4. 2. 2 Resonančni graf

Zaradi prehajanja Kekulejevih struktur iz ene v drugo je smiselno vpeljati resonančni graf R(G) heksagonalnega sistema G. Množico vozlišč resonančnega grafa R(G) sestavljajo vsi 1-faktorji heksagonalnega sistema G. Za definiranje povezav med dvema vozliščema oziroma 1-faktorjema pa najprej poglejmo, kaj je simetrična razlika dveh 1-faktorjev.

Simetrična razlika dveh poljubnih množic je definirana kot razlika unije in preseka teh dveh množic. V simetrični razliki dveh 1-faktorjev: $(F_1 \cup F_2) - (F_1 \cap F_2)$ so tako nekatere povezave danega heksagonalnega sistema. Če je simetrična razlika dveh 1-faktorjev F_1 in F_2 množica povezav natanko enega heksagonal v heksagonalnem sistemu *G*, takrat imamo povezavo F_1F_2 v resonančnem grafu R(G): $F_1F_2 \in V(R(G)) \rightarrow F_1F_2 \in E(R(G)).$

Slika 21. Simetrična razlika heksagonalnih sistemov z dvema heksagonoma.

5 Fibonaccijeve kocke in resonančni grafi

Eden od glavnih ciljev te naloge je pokazati povezavo med resonančnimi grafi fibonacenov in Fibonaccijevimi kockami.

Izrek 1 [3]:

Naj bo G poljuben fibonacen z *n* heksagoni. Potem je resonančni graf R(G) izomorfen Fibonaccijevi kocki Γ_n .

Dokaz 1:

Naj bodo h_1, h_2, \ldots, h_n heksagoni fibonacena *G*, pri čemer je h_1 prvi, h_n zadnji, vsi ostali pa so v nerazvejano verigo povezani tako, da trije sosednji ne tvorijo linearne verige, temveč je med njimi prelom.

Najprej je potrebno pokazati bijektivno povezavo med R(G) in Γ_n . Naj bo $\mathcal{F}(G)$, množica vseh 1-faktorjev fibonacena G in definirajmo označitveno funkcijo:

$$\ell: \mathcal{F}(\mathsf{G}) \to \{0,1\}^n$$

To pomeni, da je vsak heksagon fibonacena G lahko označen z 1 ali z 0. Sedaj bomo definirali, kdaj je heksagon lahko označen 1 in kdaj 0.

Definirajmo vez med sosednjima heksagonoma h_i in h_{i-1} , ki si delita povezavo e'. Heksagon h_i vsebuje dve povezavi, naj bosta to f in f', ki imata vsaka po eno skupno vozlišče z e'. Če povezavi f in f' pripadata nekemu 1-faktorju F fibonacena G, tedaj vsebuje F vez od heksagona h_i k heksagonu h_{i-1} .

Slika 22. Primer označevanja dveh sosednjih heksagonov v fibonacenu

Naj bo *F* poljuben 1-faktor fibonacena *G* in naj bo *e* stranica heksagona h_1 , ki je nasprotna skupni povezavi med h_1 in h_2 . Za i = 1 je enačba:

$$(\ell(\mathbf{F}))_1 = \begin{cases} 1; & e \in \mathbf{F} \\ 0; & e \notin \mathbf{F} \end{cases}$$

To pomeni, da je vsak heksagon, ki ima povezavo e, označen z 1 in vsak, ki nima povezave e, je označen z 0. Kadar je heksagon na prvem mestu označen z 1, izgleda tako:

Slika 23. Primer označevanja prvih dveh heksagonov v fibonacenu

Povezava *e* se nahaja nasprotno od skupne povezave med h_1 in h_2 . Ker torej h_1 vsebuje Povezavo *e*, mu dodelimo oznako 1. V primeru, da heksagon h_1 povezave *e* ne bi vseboval, bi mu dodelili oznako 0.

Poglejmo še kako je z označevanjem znotraj verige, torej takrat ko vstavljamo poljuben i = 2, 3, ..., n. Enačba je sledeča:

$$(\ell(F))_i = \begin{cases} 1; \ F \ vsebuje \ vez \ med \ h_i \ in \ h_{i-1} \\ 0; \ obratno \end{cases}$$

Torej, če imamo vez od heksagona h_i do heksagona h_{i-1} , je *i*-to mesto v oznaki enako 1, sicer pa 0.

Opazimo, da $(\ell(F))_1 = 1$ implicira $(\ell(F))_2 = 0$. Opazimo tudi, da pri treh zaporednih heksagonih h_{i-2} , h_{i-1} in h_i , 1-faktorji ne morejo vsebovati obeh vezi od h_i do h_{i-1} ter od h_{i-1} do h_{i-2} . Sledi, da se v $\ell(F)$ dve zaporedni enici ne pojavita.

Prepoznati je mogoče, da za različna 1-faktorja *F* in *F'*, $\ell(F) \neq \ell(F')$. Poznano je, da *G* vsebuje F_{n+2} 1-faktorjev. Iz tega sledi, da so vozlišča R(G) bijektivno povezana z vozlišči Γ_n (funkcija ℓ).

Za zaključek dokaza moramo pokazati, da za 1-faktorja F in F' grafa G velja sledeče:

F je povezan s *F*', je
$$H(\ell(F), \ell(F')) = 1$$
.

Recimo torej, da sta *F* in *F'* v *R*(*G*) povezana. Če njuna simetrična razlika vsebuje povezave v h_1 , potem se $\ell(F)$ in $\ell(F')$ razlikujeta v enem heksagonu in sovpadata v vseh drugih. Zdaj predpostavimo, da simetrična razlika med *F* in *F'* vsebuje povezave v h_i , pri čemer velja, da je $h_i \ge 2$. Potem mora natanko en izmed 1-faktorjev *F* in *F'* vsebovati povezavo med h_i in h_{i-1} , recimo, da je to *F*. Potem velja $(\ell(F))_i = 1$ in $(\ell(F'))_i = 0$. Preostanka binarnega niza $\ell(F)$ in $\ell(F')$ sta med seboj enaka: $j \ne i$ $(\ell(F))_i = (\ell(F'))_i$.

Podobno predpostavimo, da je $H(\ell(F), \ell(F')) = 1$. Potem se *F* in *F'* med seboj razlikujeta v natanko enem heksagonu, recimo v h_i . Predpostavimo, da je i = 1. Potem niti *F* niti *F'* ne vsebujeta povezave med heksagonoma h_2 in h_1 , kar implicira, da je njuna simetrična razlika skupek vseh povezav v h_1 . Ker *F* in *F'* sovpadata v vseh drugih heksagonih, sta povezana v R(G). Recimo sedaj, da je $2 \le i \le n - 1$. Tedaj niti *F* niti *F'* ne vsebujeta povezave med h_{i+1} in h_i ter med h_{i-1} in h_{i-2} . Zatorej so v simetrični razliki med *F* in *F'* vse povezave heksagona h_i . Končno, i = n se razume analogno kot i = 1.

6 Nanocevke

6. 1 Definicija nanocevke

Predstavljamo si, da imamo mrežo benzenovih obročev (heksagonov). Izberemo si poljubno oglišče 0, ki naj bo izhodišče in iz njega narišemo dva osnovna vektorja, kot je to razvidno s Slike 24. Točka A je krajevni vektor od $na_1 + ma_2$. To pomeni, da seštevek določenih večkratnikov vektorja a_1 in a_2 mora pripeljati v točko A. Nato skozi točki A in 0 narišemo pravokotnici na vektor 0A, ki ju označimo z L_1 in L_2 . Preko njiju zlepimo mrežo heksagonov, s čimer dobimo plašč valja. Na valju izberemo cikla C_1 in C_2 , nanocevka pa je določena z vsemi heksagoni med njima. Tak tip nanocevke označimo z (n, m). V primeru na *Sliki 24.* vidimo nanocevko tipa (4, 2).

Slika 24. Definiranje nanocevke s pomočjo heksagonalne mreže.

6. 2 Lastnosti nanocevk

Dandanes so nanomateriali, sploh nanocevke z ogljikom eden najbolj zanimivih materialov v sodobni tehnologiji. Zaradi medatomskih vezi in planarne strukture sp² nanocevke dosegajo trdnost, ki je primerljiva z diamantom in njihova nosilnost je 1000-krat večja od bakra. So 100-krat nmočnejše in 6-krat lažje od jekla. Imajo lastnosti prevodnikov, polprevodnikov ter superprevodnikov. Nanomaterial dosega stabilnost pri 4000K in ima 2-krat večjo toplotno kapaciteto od diamanta.

7 Lucasove kocke in resonančni grafi

Povezavo med nanocevkami in Lucasovim zaporedjem lahko najdemo samo, če imamo (n, n) tip nanocevke. Ciklični polifenantren s sodim številom heksagonov predstavlja (n, n) tip nanocevke.

Izrek 2 [2]:

Naj bo *G* poljuben ciklični polifenantren z 2*n* heksagoni. Potem je resonančni graf R(G) izomorfen uniji Lucasove kocke Λ_{2n} in dveh izoliranih vozlišč.

Dokaz 2:

Naj bo T_{2n} ciklični polifenantren z 2*n* heksagoni in naj bo B_{2n} polifenantren dobljen iz T_{2n} tako, da ga razpnemo preko povezav *e* in *e'*, ki sta spojni povezavi v T_{2n} .

Zaporedoma oštevilčimo vse heksagone B_{2n} in dobimo: h_1 , h_2 , h_3 , ..., h_{2n} . Iz Izreka 1 vemo, da lahko 1-faktorje polifenantrena predstavimo z binarnimi oznakami, ki ne vsebujejo zaporedih enic. Tako je resonančni graf $R(B_{2n})$ izomorfen Fibonaccijevi kocki Γ_{2n} .

Naj bo $M(B_{2n})$ množica vseh 1-faktorjev polifenantrena B_{2n} in naj bo $M(T_{2n})$ množica vseh 1-faktorjev cikličnega polifenantrena. Potem je $M_1(B_{2n})$ množica 1-faktorjev B_{2n} , ki vsebuje vsaj eno od spojnih povezav e in e'. Če odstranimo eno od spojnih povezav e ali e' in celotni polifenantren zlepimo skupaj dobimo ciklični polifenantren T_{2n} .

Vsak 1-faktor iz množice M_1 (B_{2n}) lahko tako skrčimo na 1-faktor cikličnega polifenantrena T_{2n} in vsi taki 1-faktorji naj tvorijo množico M_1 (T_{2n}).

Slika 25. Ciklični polifenantren z osmimi heksagoni.

Zdaj pa naj bo *M*' 1-faktor od $M(B_{2n})\setminus M_1(B_{2n})$, torej od razlike obeh množic. Iz tega sledi, da *M*' ne vsebuje nobene od spojnih povezav *e* ali *e*', zato ga ne moremo zlepiti (kot kaže *Slika 25.*). Opazimo lahko, da ima takšen 1-faktor na začetku in na koncu binarnega niza enico: $(\ell(M'))_1 = (\ell(M'))_{2n} = 1$.

Slika 26. 1-faktor brez e in e' spojnih povezav.

Potemtakem je podgraf resonančnega grafa B_{2n} (graf Fibonaccijeve kocke Γ_{2n}) izomorfen Lucasovi kocki Λ_{2n} . Torej je resonančni graf poljubnega cikličnega polifenantrena izomorfen Lucasovi kocki.

Slika 27. Resonančni graf cikličnega fibonacena s štirimi heksagoni.

Zdaj pa poglejmo 1-faktorje T_{2n} , ki niso v $M_1(T_{2n})$. Naj bosta u_1 in u_2 končni vozlišči s skupno vezjo e od T_{2n} in naj bo M_2 1-faktor od $M(T_{2n}) \setminus M_1(T_{2n})$.

Slika 28. 1-faktorja T_{2n}, ki nista v M₁.

Vozlišči u_1 in $u_2 \vee M_2$ morata biti pokriti z dvema različnima povezavama, recimo f_1 in f_2 . Ti dve povezavi ne smeta pripadati istemu heksagonu. Tako naj bo $f_1 \vee h_1$ heksagonu in $f_2 \vee$ heksagonu h_{2n} ali nasprotno od h_1 . Edini način, da razširimo M_2 po ostalih ogliščih je bodisi tako, da jih narišemo vodoravno bodisi, da so povezave izmenično razporejene (*Slika 28.*). Iz tega sledi, da je $|M(T_{2n}) \setminus M_1(T_{2n})| = 2$. Ker noben heksagon v teh dveh 1-faktorjih ne vsebuje vseh treh možnih povezav, sta ta dva 1-faktorja vozlišči stopnje ena oz. izolirani vozlišči v resonančnem grafu cikličnega polifenantrena.

8 Ugotovitve

Eden od ciljev naloge je bil raziskati in opisati povezavo med fibonaceni in njegovimi resonančnimi grafi. Ugotovili smo, da lahko vsak poljuben fibonacen G s n številom heksagonov opišemo z resonančnim grafom R(G), ki ima F_{n+2} število vozlišč in je izomorfen Fibonaccijevi kocki. Zdaj izberemo fibonacen H z n - 1 heksagoni, katerega resonančni graf ima F_{n+1} število vozlišč. Če fibonacenu G dodamo natanko en heksagon, torej ima skupaj n + 1 heksagonov, se bo število njegovih vozlišč v resonančnem grafu povečalo natanko na $F_{n+1} + F_{n+2}$. Tako smo število heksagonov fibonacena povezali s številom člena Fibonaccijevega zaporedja in število vozlišč resonančnega grafa z vrednostjo tega člena.

Slika 29. Shematski prikaz povezovanja resonančnih grafov v Fibonaccijevo zaporedje.

Pri raziskovanju smo si pomagali z risanjem heksagonalnih sistemov, katerim smo dodelili ustrezne oznake, ter jih pretvarjali v resonančne grafe. Pri tem smo ugotovili, kako sta z vsem povezana Fibonaccijevo in Lucasovo zaporedje.

Splošno pravilo torej je, da dva zaporedna heksagona ne označimo z 1. Vsakemu heksagonu v poljubnem fibonacenu, ki je končni, lahko dodamo heksagon, ko je označen z 0. To pomeni, da vsaka naslednja Fibonaccijeva kocka F_n , ki jo dobimo iz 1-faktorjev, predstavlja vse 1-faktorje predhodne Fibonaccijeve kocke F_{n-1} , katerim smo dodali heksagone, označene z 0. To pa še niso vsi možni 1-faktorji, saj lahko na končni heksagon vežemo tudi novega z oznako 1 samo pod pogojem, da je bil ta označen z 0. To pomeni, da poleg vseh, ki jim dodamo 0, obstajajo tudi takšni, ki jim dodamo 1, torej pod pogojem, da je predzadnji označen z 0. 1-faktorjev znotraj Fibonaccijeve kocke, ki se končajo na 1, je ravno toliko, kot je vseh 1-faktorjev v F_{n-2} . To posledično pomeni, da si število 1-faktorjev Fibonaccijeve kocke F_n sledi po Fibonaccijevem zaporedju, le da se začne od vključno z tretjega člena dalje.

Slika 30. Shematski prikaz nastajanja Fibonaccijevega zaporedja 1-faktorjev 1. del.

Slika 31. Shematski prikaz nastajanja Fibonaccijevega zaporedja 1-faktorjev 2. del.

Na *Slikah 30. in 31.* je shematski prikaz nastajanja Fibonaccijevega zaporedja iz 1faktorjev. Vsakemu prejšnjemu torej dodamo 0 heksagon (ponazorjeno s puščicami), nekateri pa se končajo na 1 (ponazorjeno s +).

Pri nanocevkah si moramo predstavljati, da med seboj povežemo prvi ter zadnji heksagon in tako dobimo sklenjen heksagonalni sistem. Tukaj veljajo vsa pravila kot pri nesklenjenih, le da se pojavi novo, ki prepoveduje označevanje prvega in zadnjega heksagona z 1. Torej se skrči množica tistih, ki smo jim na koncu dodali 1 in število 1-faktorjev novonastale Lucasove kocke L_n sledi po Lucasovem zaporedju.

9 Zaključek

S svojim raziskovanjem sva se seznanila s povezavo benzenoidnih ogljikovodikov s Fibonaccijevim in Lucasovim zaporedjem. Razumevanje strukture se nama zdi pomembno, saj tovrstna pravila povezovanja heksagonov veljajo v resničnem svetu in lahko pripomorejo k odkrivanju novih aktualnih matrialov.

10 Viri

- 1. M. Berlič, Resonančni grafi ravninskih dvodelnih grafov, diplomsko delo, Maribor, 2009.
- 2. M. Berlič, P. Žigert, Lucas Cubes and Resonance Graphs of Cyclic Polyphenanthrenes, MATCH Commun. Math. Comput. Chem. 68 (1) (2012) 77-90.
- 3. S. Klavžar, P. Žigert, Fibonacci cubes are the resonance graphs of fibonaccenes, Fibonacci Quart. 43 (2005) 269–276.
- 4. A. Taranenko, Elementarni benzenoidni grafi in nad njimi definirani grafi, doktorska disertacija, Maribor, 2008.
- 5. J. R. Wilson, J. Watkins, Uvod v teorijo grafov, Društvo matematikov, fizikov in astronomov Slovenije, Ljubljana, 1997
- 2015. Zeckendorf's Theorem. Dostopno na naslednjem URL naslovu: <u>https://en.wikipedia.org/wiki/Zeckendorf%27s_theorem</u> (Citirano 16. 1. 2016)